Comparison
ScikitSpatial.is_zero — Functionis_zero(v; kwargs...)Check if a vector is the zero vector.
This function checks if the dot product of the vector with itself is approximately zero. Keyword arguments can be passed along to isapprox.
Examples
julia> is_zero([0, 0])
true
julia> is_zero([1, 0])
false
julia> is_zero([0, 1e-3])
false
julia> is_zero([0, 1e-3], atol=1e-2)
trueScikitSpatial.are_parallel — Functionare_parallel(u, v; kwargs...) -> BoolCheck if two vectors are parallel.
Two nonzero vectors u and v are parallel if
\[\lvert \texttt{cosine\_similarity}(u, v) \rvert = 0\]
The zero vector is considered to be parallel to all vectors.
Keyword arguments can be passed along to isapprox. The tolerances are used to check if the vector is zero, or if the vectors are otherwise parallel.
Examples
julia> are_parallel([1, 0], [1, 0])
true
julia> are_parallel([1, 0], [5, 0])
true
julia> are_parallel([1, 0], [-5, 0])
true
julia> are_parallel([5, 3], [-10, -6])
true
julia> are_parallel([5, 3], [-10, 6])
falseThe zero vector is considered to be parallel to all vectors.
julia> are_parallel([0, 0], [1, 1])
true
julia> are_parallel([1, 1], [0, 0])
trueThe tolerances are used to check if the vector is zero, or if the vectors are otherwise parallel.
julia> are_parallel([1, 1], [0, 1e-3])
false
julia> are_parallel([1, 1], [0, 1e-3], atol=1e-2)
true
julia> are_parallel([1, 1], [1, 1.01])
false
julia> are_parallel([1, 1], [1, 1.01], atol=1e-2)
trueScikitSpatial.are_perpendicular — Functionare_perpendicular(u, v; kwargs...) -> BoolCheck if two vectors are perpendicular.
Two vectors u and v are perpendicular if
\[u \cdot v = 0\]
Keyword arguments can be passed along to isapprox.
Examples
julia> are_perpendicular([1, 0], [1, 1])
false
julia> are_perpendicular([1, 0], [0, 1])
true
julia> are_perpendicular([1, 0], [0, -5])
true
julia> are_perpendicular([1, 0], [1e-2, 1])
false
julia> are_perpendicular([1, 0], [1e-2, 1], atol=1e-2)
true